
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

3DV
#241

3DV
#241

3DV 2020 Submission #241. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Simulated Annealing for 3D Shape Correspondence

Anonymous 3DV submission

Paper ID 241

Abstract

We propose to use Simulated Annealing to solve the cor-
respondence problem between near-isometric 3D shapes.
Our method gains efficiency through quickly upsampling
a sparse correspondence by minimizing the embedding er-
ror of new samples on the surfaces and applying simu-
lated annealing to refine the result. The algorithm alter-
nates between sampling additional points on the surface
and swapping points within the current solution accord-
ing to Simulated Annealing theory. Simulated Annealing
is a probabilistic method and less prone to get stuck in lo-
cal extrema which allows our method to obtain good re-
sults on the NP-hard quadratic assignment problem (QAP).
Our method can be used as a stand-alone correspondence
pipeline through a robust initial seed generator as well as to
densify a set of sparse input matches. Furthermore, the use
of locality sensitive hashing to approximate geodesic dis-
tances reduces the computational complexity and memory
consumption significantly. This allows our algorithm to run
on meshes with over 100k points, an accomplishment that
few approaches tackling the QAP directly achieve. We show
convincing results on datasets like TOSCA and SHREC’19
Connecitvity.

1. Introduction
Shape correspondence problems occur in a great variety

of 2D and 3D vision and graphic processing tasks. They
can be applied in many applications, e.g. texture transfer,
recognition or statistical shape models. These applications
become more and more relevant with the rise of VR and
AR, and the need for scalable algorithms increases with the
precision of acquisition hardware. In its essence, the shape
correspondence problem aims to find a semantically mean-
ingful mapping between the points on two compact two-
dimensional Riemannian manifolds X and Y , i.e. a func-
tion ϕ : X → Y . The definition of semantically meaningful
can vary depending on the application but it is common to
choose pair-wise features, e.g. distance values, to be pre-
served. In case of a rigid transformation between X and Y

this translates to preserving the Euclidean distance between
points and the problem has six degrees of freedom, which
makes it efficiently solvable. In more general cases and with
discretized shapes this can be formulated as a version of the
NP-hard Quadratic Assignment Problem (QAP):

Π∗ = arg max
Π∈Pn

∑
x,y∈X

kX (x, y) · kY(Π(x),Π(y)) (1)

Here, Pn denotes the set of n-permuations assuming
both shapes are discretized with n points. A wide variety
of relaxations for this formulation exist (see Section 2) but
are often still not feasible for a large number of vertices.
Another problem with solving Eq. (1) exactly is the under-
lying assumption that is ϕ is an bijection. While this is rea-
sonable in the continuous formulation, it requires the same
amount of vertices on both shapes. This assumption is often
not met in real-world data and needs to be artificially en-
forced through subsampling which adds additional pre- and
postprocessing and might distort the result, for example for
partial shapes.

Contribution In this paper, we propose to compute a cor-
respondence between two 3D shapes by approximating the
solution to Eq. (1) using a simulated annealing strategy [17].
Our main contributions are the following:

• We propose the first scalable application of Simulated
Annealing to the 3D non-rigid correspondence prob-
lem.

• Although QAPs are a NP-hard problem, we approx-
imate (1) in O(n log(n)

√
n) runtime where n is the

number of vertices.

• We propose to use a variant of locality sensitive hash-
ing to reduce the memory requirement to O(n

√
n).

• In numerous experiments, we demonstrate that the pro-
posed algorithm can be used both as a stand-alone
framework with a seed generator as well as complete
and denoise a set of sparse input matches. It provides
state-of-the-art results and scales to over 50K vertices.

1

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

3DV
#241

3DV
#241

3DV 2020 Submission #241. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

2. Background & Related Work
In this section we summarize the general background

needed to understand the rest of the paper and related work
most relevant to our method. A more general survey of re-
cent shape correspondence methods can be found in [27].

We denote the input triangular meshes as X and Y and
assume that they are proper discretizations of Riemannian
2-manifolds embedded in 3D. The set of vertices of each is
denoted by {x1, ..., xn} and {y1, ..., ym} respectively.

2.1. Quadratic Assignment Problem

Modeling the correspondence problem in variants of the
Quadratic Assignment Problem (QAPs) has a long history
[3]. If both shapes have the same number of points, then
the correspondence φ can be represented by a permutation
π, which maps the vertices {x1, ..., xn} of the triangluar
mesh X to the vertices {y1, ..., yn} of the triangluar mesh
Y . Following the approach of [33], the optimal permutation
π can be described as the solution to a quadratic assignment
problem (QAP) with the objective

max
π

∑
1≤i,j≤n

kX (xi, xj)kY(yπ(i), yπ(j)). (2)

This objective is also referred to as the Koopman-Beckman
version of a QAP. kX and kY denote an arbitrarily chosen
measure of the closeness between two points on X and Y .
However, as the original formulation, all variants are NP-
hard and in general not tractable for instances with more
than a few dozen points. This also holds for the Quadratic
Assignment Matching (QAM) [8]. It was even shown that
finding a ε-approximate in polynomial time for any ε is only
possible if P=NP [28].

Relaxations of the permutation matrix constraint are a
popular way to reduce the computational complexity of (1).
Spectral relaxations as introduced in [18] replace permuta-
tions with a Frobenius norm constraint which reduces the
optimization to an eigenvector problem. Other popular re-
laxations consider doubly-stochastic (DS) matrices instead
[5, 10] which preserves the optimum for concave energies
and on specific graph matching cases [1] but not for general
non-convex energies. Other relaxations can be shown to be
tight but are still to computationally demanding to apply to
high-resolution scans [4, 14].

The Product Manifold Filter (PMF) [34] solves the same
optimization problem as our work with a series of Linear
Assignment Problems (LAPs). However, it cannot work as
a stand-alone method, and only works on full shapes with
the same resolution and requires a (possibly sparse) initial-
ization. Additionally, the size of the problem is restricted
by the size of LAP that can be solved, usually not more
a few thousand vertices. PMF has been extended to work
with features as initialization and on much higher resolu-
tions with a multi-scale approach in [33], but cannot densify

sparse inputs anymore. Both [34] and [33] are prone to get
stuck in local optima without chance of recovering whereas
our framework starts with a variety of initializations and ap-
plies a probabilistic approach which makes it more flexible.

2.2. Approximation Algorithms

Approaches that do not have any guarantees on being
close to the optimal solution can still work well in practice
and actually be more efficient. One class of algorithms, that
our method also falls into, looks for small step improve-
ments over the current solution. A famous member of this
class is [13] solving graph isomorphism. If the improve-
ment step has a probabilistic condition it is possible to es-
cape local optimal in very non-convex problems.

Genetic algorithms [22] fall under probabilistic opti-
mization with an idea based on evolution theory, namely
mutation and selection. This has been successfully ex-
plored for 3D correspondences in [26] but is not efficient
enough to produce a dense correspondence on high resolu-
tion shapes. [26] is similar to our pipeline in that its starts
with a very sparse set of correspondences that are refined
and expanded iteratively but only generates a fixed sized
sparse solution where we can sample indefinitely. [11] also
applied a genetic algorithm for 3D shape correspondence
but operates on maps. This scales to high resolutions but
relies on a reliable method to convert the map back to a
pointwise correspondence.

Simulated Annealing, which we use in this work, is a
variant of the Metropolis algorithm [21] that can approxi-
mate the global solution for complex functions and solution
spaces that defy conventional optimization techniques [24].
A solution to a discrete optimization problem is identified
by the physical state of a set of atoms. Starting with an
initial state and temperature t, a random generator produces
displacements of the atoms which change the energyE (ob-
jective function) so that the system of atoms remains ad-
missible. A displacement du is applied to a randomly cho-
sen atom and then the change in energy dE is assessed. If
dE < 0 the displacement is accepted. Otherwise

P (dE) := e−
dE
kt (3)

is evaluated, where k is the Boltzmann constant. P (dE) is
compared with a random variable X that is uniformly dis-
tributed in (0, 1) and we accept the displacement if X <
P (dE). The temperature t controls the flexibility to accept
changes increasing the objective function value and is grad-
ually lowered over the course of the optimization. In the
case of the QAP, the random displacements are transposi-
tions and the corresponding change in energy can be com-
puted in O(n). Simulated Annealing has been used to find
point correspondences for stereo vision [30] or protein pre-
diction [29]. However, these algorithms do not scale to large

2

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

3DV
#241

3DV
#241

3DV 2020 Submission #241. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Seed Generator

Sparse Input
Matches

Insertion Phase 1

Swapping

Insertion Phase 2

Sw
ap

pi
ng

ZoomOut

Figure 1: Overview over our pipeline. The initialization can either be a set of sparse input matches or produced by our
proposed seed generator. The next phase alternates between inserting new points and swapping the current (sparse) solution
according to Simulated Annealing strategies until 250 points are filled in. After that the solution is filled to 70% of all points
with a final round of swapping. The final step is a round of post-processing with ZoomOut [20] to densify the solution.

candidate sets but instead operate on special interest points
or return a sparse set of correspondences.

3. Method
We propose to use Simulated Annealing (SA) to opti-

mize for the optimal permutation Π∗ in this QAP

Π∗ = arg max
Π∈Pn

∑
x,y∈X

kX (x, y) · kY(Π(x),Π(y)). (4)

We propose a specific choice for kX and kY :

kX (x, y) := e−dX (x,y) and kY(x, y) := e−dY (x,y),
(5)

where dX and dY denote the geodesic distance on X and
Y . This definition tries to incentivize smoothness because a
single point xi on X contributes the most to the optimal ob-
jective (2) if all points in its neighborhood have correspon-
dences on Y that are also in the neighborhood of Π(xi).
In SA the current solution and a neighboring one are eval-
uated in terms of energy (Eq. (4)), and the neighbor is ac-
cepted with a certain probability based on the energy change
and current temperature (see Section 2.2 for details). In
case of the correspondence problem the current solution is
a (sub)permutation Π and a neighbor is a subpermutation,
where two matches Π(x) = x′,Π(y) = y′ are switched
such that Π(x) = y′,Π(y) = x′. If at some point no more
random displacements are accepted, the system is ‘frozen’.

Due to the complexity of the problem for large number
of vertices n, we propose several adjustments to make SA
more efficient in both memory consumption and runtime.
We use locality sensitive hashing instead of calculating and
storing all geodesic distances, see Section 3.1. Furthermore,
we introduce a seed generator to produce a sparse initializa-
tion well suited for our algorithm in Section 3.5. Based on

the sparse initialization our algorithm gradually adds more
points (Section 3.3) while already refining the solution with
SA (Section 3.4). We focus on refining when the solution
is not dense because this allows to correct errors with less
swapping operations.

3.1. Locality Sensitive Hashing

We use locality sensitive hashing [12] instead of calcu-
lating the entire geodesic distance matrices for X ,Y . Cal-
culating the entire distance matrix is slow and not feasible
for high resolutions, since it contains n2 elements.

For a set of points S = {s1, ..., sn} and an arbitrary dis-
tance function d : S → R locality sensitive hashing approx-
imates the distances by selecting a suitable subset Z ⊂ S
with |Z| � n and considers the inequalities obtained from
the elementary triangle inequality:

max
z∈Z
|d(z, s)−d(z, s∗) | ≤ d(s, s∗) ≤ min

z∈Z
d(z, s)+d(z, s∗),

(6)
which holds for all s, s∗ ∈ S . The tightness of these in-
equalities is determined by S, d and Z. We demonstrate
how well we can approximate the geodesic distance d on a
sphere in Appendix B. Effectively, each z ∈ Z serves as a
hash function which projects all points {s ∈ S |d(s, z) = t}
to a single number t ∈ R+. If two points s1 and s2 have a
similar profile, i.e. d(s1, z) ≈ d(s2, z) for all z ∈ Z, then
s1 and s2 are likely to be very close on S. We call the points
contained in Z basis points.

Basis Points For X we choose
√
n many basis points by

farthest point sampling and precompute the order of near-
est basis points with decreasing kX (x, z) for each vertex x
on X . Most kX (x, z) will be close to 0 because kX (x, z)

3

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

3DV
#241

3DV
#241

3DV 2020 Submission #241. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(i)

5 6
3

1

2
4

(ii)

Figure 2: Connections between basis points (orange) and
their surrounding vertices (blue). (i) For each x basis points
are sorted by their distance from x as labeled on the dashed
lines. (ii) The environment of a basis point b are all vertices
such that b is one of their three closest basis points (solid
lines).

decays exponentially with increasing distance. Assuming
that the points x and the basis points z are evenly dis-
tributed across the shape’s surface, only few basis points
will be close to x, and we define the environment of a ba-
sis points z as all points x to which z is among the three
closest basis points. As a result, the environments of close
basis points will be overlapping and each point on X will
be contained in the environment of exactly three basis point
environments. Close points to x can be computed by merg-
ing the environments of the basis points that are close to
x. Depending on how many close points we want, we can
change the number of close basis points that we consider.
This behavior will be important in Section 3.3. Note that
if |Z| = Θ(

√
n), then the cardinality of the environments

of the basis points will be Θ(
√
n) on average. Ordering the

basis points’ distances for each vertex on X can be done
with an efficient implementation in O(n|Z| log(|Z|)). The
construction and analysis on Y is equivalent.

3.2. Optimization

Our SA process has five stages that depend on the num-
ber of vertices k that have already been added to the so-
lution. First, we start on several sparse subpermutations
πk produced by the seed generator as the initial seed to
which we add gradually more matches. SA is applied regu-
larly during insertion until a sufficient number of points are
matched in Πk. In our experiments we found that the final
matching was already well characterized by approx. 250
points and [34] has shown that a well distributed subper-
mutation defines the dense solution well enough [34]. Each
system is ’frozen’ by another application of SA with tem-
perature 0 and each Πk is evaluated according to the QAP
objective (4). The Πk with the best score is finalized by
inserting the remaining points into the matching until 70%
of points are matched. We do not match all points through
the insertion process because the last insertions are prone to
produce outliers. A final SA phase with zero temperature is

applied and in the end ZoomOut [20] is used to produce a
dense solution. We focus on applying SA early because the
amount of swaps needed to escape a random, dense solution
is very high.

Inconsistent Mesh Resolution. A challenging nature of
the shape correspondence problem can be observed, when
the number of vertices on the mesh X is less than the num-
ber of vertices on Y . For instance, let the same Riemannian
manifold be discretized with two different resolutions, one
of which is much finer than the other. We cannot require
that an optimal correspondence in this case is bijective any-
more but if the number of vertices on X is much smaller,
injectivity is still possible. However, an optimal solution
will result in a matching in which all points on Y are clus-
tered together instead of being evenly distributed. This is
a direct result of the formulation of objective (2), as points
can only contribute to the sum if they are close together. The
Cauchy-Schwartz inequality, i.e. for two vectors x, y ∈ Rn

〈x, y〉 =

(
n∑
i=1

xiyi

)2

≤

(
n∑
i=1

x2
i

)(
n∑
i=1

y2
i

)
(7)

implies that 〈x, y〉 is maximal, if xi = yi. This sug-
gests that objective (2) is near optimal, if kX (xi, xj) ≈
kY(yπ(i), yπ(j)). Based on this, we propose a surrogate
function for adding new correspondences to a partial match-
ing which aims to preserve the measure of closeness be-
tween two points on X and their matchings on Y and can be
optimized greedily. Let X̂, Ŷ be the sets of already matched
points on X and Y respectively and let y(x̂) be the corre-
spondence of x̂ ∈ X̂ on Y . We match a new point x ∈ X
to

ŷ∗ = arg min
ŷ∈Y\Ŷ

∑
x̂∈X̂

|kX (x̂, x)− kY(y(x̂), ŷ)|. (8)

ŷ∗ is the point on Y whose embedding with respect to Ŷ is
the closest to how x̂ is embedded in relation to X̂ .

3.3. Point Insertion

Point insertion refers to the extension of the existing sub-
permutation by a a single pair of points (x, y) ∈ X × Y ,
which is done repeatedly during the optimization process.
As discussed in the previous subsection, for a given point x
on X we want to find a yet unmatched point y ∈ Y which
minimizes (8). There are two stages of how we choose the
point x based on how many points were already matched.

3.3.1 First stage:

The goal of the first stage is to achieve an evenly distributed
cover of both surfaces with the inserted points. We add a
new pair to the existing matching as follows

4

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

3DV
#241

3DV
#241

3DV 2020 Submission #241. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 3: Insertion process of the algorithm visualized on two shapes from the FAUST dataset. From left to right: 1. The4
initial seed points generated by the seed generator are well distributed over the surface. 2. The �rst25 points added within
the �rst phase of point insertion. 3. The �rst phase ends when250points were added. Until this point swapping operations
re�ne the solution regularly. 4. The second insertion phase stops when the majority of points were added. Some noise and
outliers are visible. 5. The �nal solution is dense and re�ned.

1. Select a point onx 2 X by farthest point sampling
with respect to the already matched points.

2. Find the bestk best matching basis points according to
Eq. (8) onY which we callB̂ . We choosek = 3 .

3. Among the points contained in the environments of
every basis point in̂B , match the optimal unmatched
point according to Eq. (8) withx.

Pre-selecting the basis points reduces the search space sig-
ni�cantly. We alternate between sampling a point from
X and �nding a matching candidate onY, and sampling
a point onY and �nding the best matching candidate on
X . This guarantees that the matched points are evenly dis-
tributed on both surfaces after the �rst phase terminates. In
our experiments we stop the �rst phase after250points have
been matched. The �rst phase of the insertion process is vi-
sualized in Figure 3 and already indicates that250matches
are dense enough to infer the rest of the correspondence.
Therefore, we switch to the second insertion stage which
ef�ciently interpolates the current result.

3.3.2 Second stage:

In the second phase, we sample a new pointx randomly
from all yet unmatched points onX . During this phase
it might happen that we can no longer �nd an unmatched
point onY in the environments of the best matching basis
points. To still enforce the smoothness condition whenever
possible, we use the following algorithm:

1. Find all already matched points that are close tox.
This can be ef�ciently done by looking up the topm
closest basis points aroundx and merging their envi-
ronments. We denote the obtained set by EX (x). Let
UEX (x) � EX (x) contain only unmatched points and
MEX (x) only matched points.

2. For each element̂x in MEX (x) �nd E Y (ŷ(x̂)) analo-
gously to the step above whereŷ(x̂) denotes the cor-
respondence ofx on Y. The set of candidates is now
Ê := Ê (x) =

S
x̂ 2 MEX (x) UEY (ŷ(x̂)) . We stop ex-

pandingÊ (x) if it contains too many elements to guar-
antee the time bounds of the algorithm.

3. If Ê = ; we gradually increasem by 3. Oncem is
greater or equal to the number of basis points,Ê is
identical to the set of unmatched points onY and we
are guaranteed to �nd a match.

4. The matching candidatey 2 Ê for x is chosen accord-
ing to the score Eq. (8). When evaluating this score, we
only sum over MEX (x) instead of all matched points
X̂ .

We effectively search for a candidatey only among the
points that are close to the correspondences of the matched
points onX that are close tox and score it according to
them as well. Note that this only works well as both shapes
are suf�ciently covered after the �rst phase of the insertion
process.

However, the matches that are inserted last often suffer
from not �nding a good unmatched correspondence onY
since most points onY are already matched (this happens
after approx. 90% of all points were inserted). See Sec-
tion 4.2 for experiments showing the evolution of the qual-
ity of our results during insertion.

3.4. Swapping

The swapping according to SA strategy is applied multi-
ple times during the algorithm (see Section 3.2). During the
�rst insertion phase SA is applied repeatedly after a �xed
number of particles (in our experiments we used 10) has
been inserted using the same initial temperature. Since we
evaluate multiple seeds, we do not want a too high tempera-
ture because this would impair the diversity of the seeds. On

5

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

3DV
#241

3DV
#241

3DV 2020 Submission #241. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 4: Correspondence example of our method from
an input shape (left) with our method without ZoomOut
(middle) and with ZoomOut (right). Due to the sequencial
adding the last points can often not be placed correctly, lead-
ing to some extreme outliers. These can be easily removed
by using ZoomOut as post-processing.

the other hand, the temperature should not be too low so that
meaningful improvements to the subpermutation are possi-
ble. In our experiments we used a temperature oft = 0 :01.

We pick possible transpositions randomly between
matched points on both shapes. The improvements are cal-
culated only with respect to the points onX that have a
correspondence onY according to (8). Depending on the
temperature and the improvement the transposition is ac-
cepted. This is repeated2:500 times. In the last SA phase
of the �rst insertion stage, we decrease the temperature to
t = 0 to move the system to a local optimum.

At the end of the algorithm, after all points were in-
serted, we evaluate how much each match in the current
(sub)correspondence� contributes to the objective (2) and
the worst20%of contributors are marked as candidates for
re�nement in a �nal SA phase with temperaturet = 0 . The
local contribution ofx 2 X can be calculated as:

X

x 02 UEX (x)

kX (x; x 0)kY (y(x); y(x0)) : (9)

We iterate through all re�nement candidatesx and check if
there are other re�nement candidatesy 2 Ê (x) (i.e the en-
vironments of the points onX that correspond to points on
Y which are close to the correspondence ofx onY, see Sec-
tion 3.3) and check if a transposition of those pairs improves
their overall contribution.

3.5. Seed Generator

Our method needs an initial set of sparse seeds to start
the insertion process as described in Section 3.3. These can
either be given by the user or come from the seed generator.

The seed generator produces and evaluates a series ofk-
submatchings (sets ofk matches that are locally bijective)
calledseeds. The best seed according to Eq (4) is used as
the initialization for the rest of the pipeline. The embed-
ding of new points, Eq. (8), relies on the fact that the initial
points are well distributed over the surface and therefore we

sample potential seeds with farthest point sampling. For in-
stance, when matching shapes resembling human bodies, a
promising seed should match points located on the limbs
of one body to the similar counterpart on the other. These
property should be kept in mind when running the rest of
the pipeline on arbitrary input matches.

We produce all seeds by samplingm distinct points via
farthest point sampling from each of the input shapes. These
are calledM X andM Y . There arem! possible correspon-
dences betweenM X andM Y . However, it is unlikely that
any of them is completely meaningful because the point sets
were sampled independently of each other and the perfect
match might not have been sampled. To be more robust to
inconsistent samplings we only keepk < m of the candi-
dates. There are

� m
k

�
many differentk-sized subsets of an

m-sized set. Hence we can generate
� m

k

�� m
k

�
k! many dif-

ferentk-sized seeds from the candidate point sets onX and
Y. This works well because point at the tip of extremities
are the the furthest away from many subsets and sampled
early with a very high probability. In general, the differ-
ence betweenm andk should not be too large, as it dras-
tically increases the number of seeds that need to be evalu-
ated. In our experiments, we obtained good matchings for
seeds constructed withm = 4 andk = 3 . See Figure 3 for
an example of the �nal seed.

4. Experiments

We show experiments evaluating the matching error of
our method in comparison to state-of-the-art methods on
popular data sets in Section 4.1 and an ablation study in
Section 4.2, as well as some qualitative examples. We eval-
uate our algorithm according to the Princeton benchmark
protocol, see [15]. If the matching produced by our algo-
rithm contains the pair(x; y), then we plot its accumulated
error � (x) := dY (x; ŷ)=diam(Y), where diam(Y) is the di-
ameter ofY and the pair(x; ŷ) is given by a known opti-
mal matching. In the quantitative results we choose only to
non-learning methods to evaluate against to keep the results
comparable.

4.1. Quantitative Results

We evaluate our algorithm quantitatively on the TOSCA
dataset [7], the FAUST dataset [6] and the SHREC Con-
nectivity dataset [19]. The ground-truth correspondences
for all these datasets are known. The TOSCA dataset con-
sists of8 classes of triangular meshes resembling animals
and humans in different positions and ranging from3:000
to 50:000 vertices. The results can be seen in Figure 6.
The FAUST registration dataset contains100 shapes from
10people in different poses. See Figure 7 for our results in-
cluding results of the ablation study. The SHREC Connec-
tivity dataset contains44 human shapes with a wide range
of resolutions and inconsistent meshings even within the

6

